378 research outputs found

    Bulk Filling Branes and the Baryon Density in AdS/QCD with gravity back-reaction

    Full text link
    We consider the gravity back reaction on the metric due to the baryon density in effective ads/qcd model by reconsidering the role of the charged AdS black hole. Previously it has been known that the U(1) charge is dual to the R-charge. Here we point out that if we consider the case where AdS5AdS_5 is completely filled with NfN_f flavor branes, the gravity back reaction produces charged AdS black hole where the effect of charge on the metric is proportional to Nf/NcN_f/N_c. As a consequence, phase diagram changes qualitatively if we allow Nf/NcN_f/N_c finite: it closes at the finite density unlike the probe brane embedding approach. Another issue we discuss here is the question whether there is any chemical potential dependence in the confining phase. We consider this problem in the hard wall model with baryon charge. We conclude that there is a non-trivial dependence on the chemical potential in this case also.Comment: 17 pages 3x2 figures, v2: references added;v3 published version, title change and reference adde

    A New Type of Dark Energy Model

    Full text link
    In this paper, we propose a general form of the equation of state (EoS) which is the function of the fractional dark energy density Ωd\Omega_{d}. At least, five related models, the cosmological constant model, the holographic dark energy model, the agegraphic dark energy model, the modified holographic dark energy model and the Ricci scalar holographic dark energy model are included in this form. Furthermore, if we consider proper interactions, the interactive variants of those models can be included as well. The phase-space analysis shows that the scaling solutions may exist both in the non-interacting and interacting cases. And the stability analysis of the system could give out the attractor solution which could alleviate the coincidence problem.Comment: Minor modifications, references adde

    New Agegraphic Dark Energy in f(R)f(R) Gravity

    Full text link
    In this paper we study cosmological application of new agegraphic dark energy density in the f(R)f(R) gravity framework. We employ the new agegraphic model of dark energy to obtain the equation of state for the new agegraphic energy density in spatially flat universe. Our calculation show, taking n<0n<0, it is possible to have wΛw_{\rm \Lambda} crossing -1. This implies that one can generate phantom-like equation of state from a new agegraphic dark energy model in flat universe in the modified gravity cosmology framework. Also we develop a reconstruction scheme for the modified gravity with f(R)f(R) action.Comment: 8 pages, no figur

    Probing interaction and spatial curvature in the holographic dark energy model

    Full text link
    In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term QQ is proportional to the energy densities of dark energy (ρΛ\rho_{\Lambda}), matter (ρm\rho_{m}), and matter plus dark energy (ρm+ρΛ\rho_m+\rho_{\Lambda}). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model.Comment: 11 pages, 5 figures; to appear in JCA

    Interacting Agegraphic Dark Energy

    Full text link
    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\'{a}rolyh\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed.Comment: 10 pages, 5 figures, revtex4; v2: references added; v3: accepted by Eur. Phys. J. C; v4: published versio

    Interacting New Agegraphic Dark Energy in a Cyclic Universe

    Full text link
    The main goal of this work is investigation of NADE in the cyclic universe scenario. Since, cyclic universe is explained by a phantom phase (ω<1\omega<-1), it is shown when there is no interaction between matter and dark energy, ADE and NADE do not produce a phantom phase, then can not describe cyclic universe. Therefore, we study interacting models of ADE and NADE in the modified Friedmann equation. We find out that, in the high energy regime, which it is a necessary part of cyclic universe evolution, only NADE can describe this phantom phase era for cyclic universe. Considering deceleration parameter tells us that the universe has a deceleration phase after an acceleration phase, and NADE is able to produce a cyclic universe. Also it is found valuable to study generalized second law of thermodynamics. Since the loop quantum correction is taken account in high energy regime, it may not be suitable to use standard treatment of thermodynamics, so we turn our attention to the result of \citep{29}, which the authors have studied thermodynamics in loop quantum gravity, and we show that which condition can satisfy generalized second law of thermodynamics.Comment: 8 pages, 3 figure

    Interacting entropy-corrected new agegraphic dark energy in Brans-Dicke cosmology

    Full text link
    Motivated by a recent work of one of us [1], we extend it by using quantum (or entropy) corrected new agegraphic dark energy in the Brans-Dicke cosmology. The correction terms are motivated from the loop quantum gravity which is one of the competitive theories of quantum gravity. Taking the non-flat background spacetime along with the conformal age of the universe as the length scale, we derive the dynamical equation of state of dark energy and the deceleration parameter. An important consequence of this study is the phantom divide scenario with entropy-corrected new agegraphic dark energy. Moreover, we assume a system of dark matter, radiation and dark energy, while the later interacts only with dark matter. We obtain some essential expressions related with dark energy dynamics. The cosmic coincidence problem is also resolved in our model.Comment: 16 pages, no figure, accepted for publication in Gen. Relativ. Gra
    corecore